Putting the "Machine" Back in Machine Learning: The Case for Hardware-ML Model Co-design

Diana Marculescu

The University of Texas at Austin and Carnegie Mellon University dianam@{utexas.edu, cmu.edu}

enyac.org

Hey Siri...

What's 100 divided by 2?

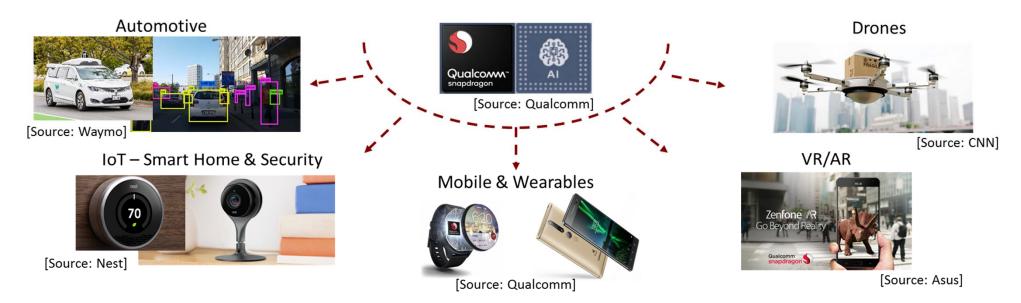
What's my name?

What is Apple?

Off-network

Machine Learning Applications Push Hardware to its Limits

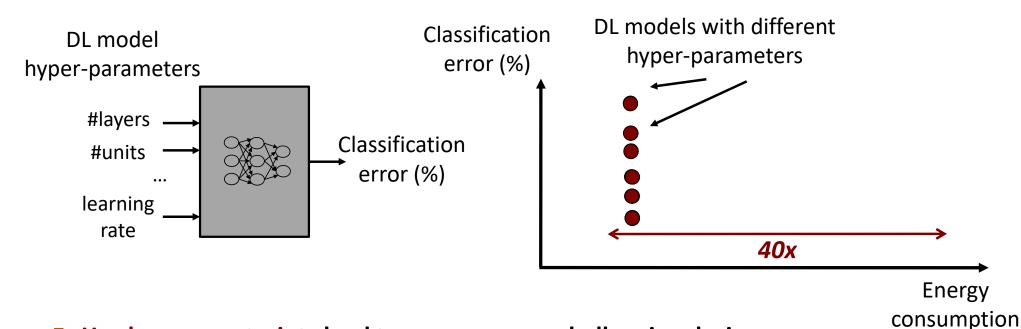
Deep Learning (DL) models are now used in every modern computing system



- Hardware constraints are a key limiting factor for DL on mobile platforms
 - ◆ Energy constraints: object detection drains smartphone battery in 1 hour! [Yang et al., CVPR'17]
 - ◆ Edge-cloud **communication** constraints
 - On-device inference (response) time constraints

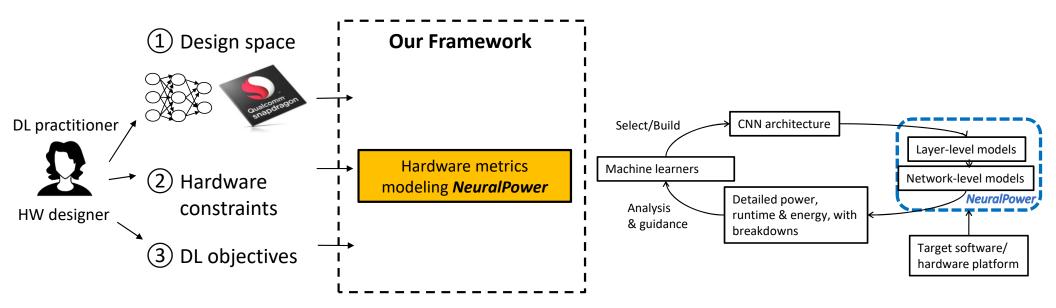
Challenge: Designing DL Models under Hardware Constraints is Hard

Hyper-parameter optimization: Find DL model with optimal learning performance



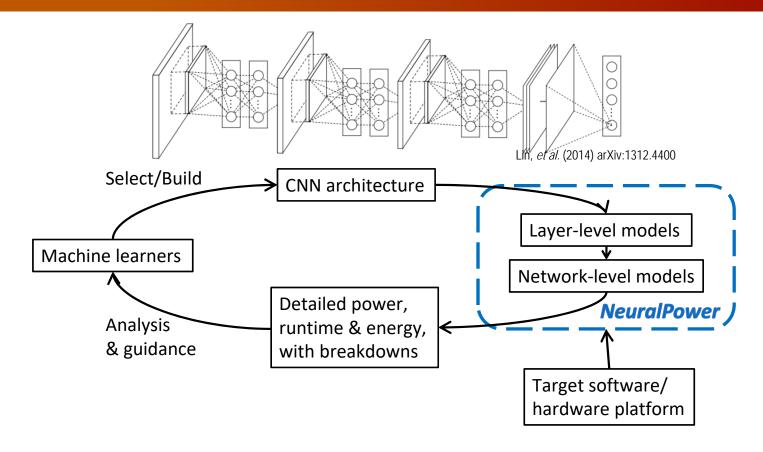
- Hardware constraints lead to an ever more challenging design space
 - ◆ 12k models, 800 GPUs, 28 days ≈ 62 GPU-years! [Zoph et al., arXiv:1707.07012, 2017]

We Can't Optimize What We Can't Measure: DL-HW Models



90% accurate models for power, energy, and latency for DL running on HW platforms; can be used as an objective or constraint

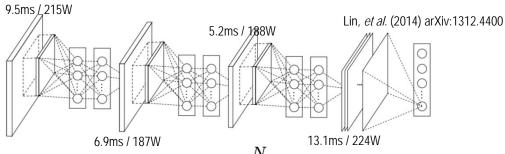
NeuralPower: A Layer-wise Predictive Framework



NeuralPower: Network-Level Models

Energy:

$$\hat{E}_{total} = \hat{T}_{total} \cdot \hat{P}_{avg} = \sum_{n=1}^{N} \hat{P}_n \cdot \hat{T}_n$$



Runtime:

$$\hat{T}_{total} = \sum_{n=1}^{N} \hat{T}_n$$

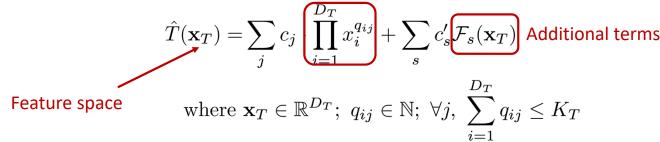
Power:

$$\hat{P}_{avg} = \frac{\sum_{n=1}^{N} \hat{P}_n \cdot \hat{T}_n}{\sum_{n=1}^{N} \hat{T}_n}$$

NeuralPower: Layer-Level Models

Runtime model:

Degree K_T polynomial terms



e.g., Feature space for Conv. = {kernel size, stride size, padding size, #filters, ...}

Power model:

Degree K_P polynomial terms

$$\hat{P}(\mathbf{x}_P) = \sum_j z_j \left(\prod_{i=1}^{D_P} x_i^{m_{ij}} + \sum_k z_k' \mathcal{F}_k(\mathbf{x}_P) \right) \text{ Additional terms}$$
 where $\mathbf{x}_P \in \mathbb{R}^{D_P}; \ m_{ij} \in \mathbb{N}; \ \forall j, \ \sum_{i=1}^{D_P} m_{ij} \leq K_P$

e.g., Feature space for Conv. = {kernel size, log(kernel size), stride size, log(stride size), ...}

Layer-level Results

Runtime:

♦ Baseline: Paleo [Qi et al., ICLR'17]: uses analytical methods to calculate the response time for CNNs

Layer type	1	NeuralPow	Paleo Qi et al. (2016)		
Lay or type	Model size	RMSPE	RMSE (ms)	RMSPE	RMSE (ms)
Convolutional	60	39.97%	1.019	58.29%	4.304
Fully-connected	17	41.92%	0.7474	73.76%	0.8265
Pooling	31	11.41%	0.0686	79.91%	1.763

Power:

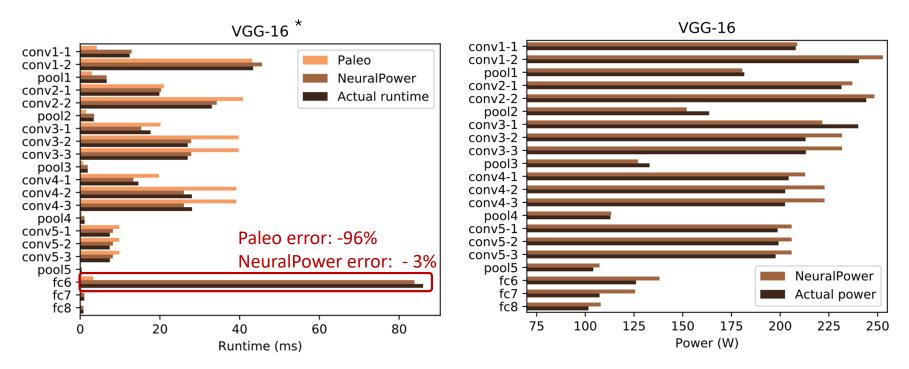
◆ No prior work with respect to power prediction

Layer type	NeuralPower						
Layer type	Model size	RMSPE	RMSE (W)				
Convolutional	75	7.35%	10.9172				
Fully-connected	15	9.00%	10.5868				
Pooling	30	6.16%	6.8618				

Network-level Results: Breakdown

Runtime Power

Diana Marculescu © 2020



^{*} Comparison against prior art: "[H.Qi, E.R. Sparks, and A. Talwalkar., ICLR'17]

Network-level Results: Runtime & Power

Runtime

CNN	Qi et al. (2016)	NeuralPower	Actual runtime
name	Paleo (ms)	\hat{T}_{total} (ms)	T_{total} (ms)
VGG-16	345.83	373.82	368.42
AlexNet	33.16	43.41	39.02
NIN	45.68	62.62	50.66
Overfeat	114.71	195.21	197.99
CIFAR10-6conv	28.75	51.13	50.09

Power

$$\hat{P}_{avg} = \frac{\sum_{n=1}^{N} \hat{P}_{n} \cdot \hat{T}_{n}}{\sum_{n=1}^{N} \hat{T}_{n}}$$

CNN	NeuralPower	Actual power		
name	\hat{P}_{total} (W)	P_{avg} (W)		
VGG-16	206.88	204.80		
AlexNet	174.25	194.62		
NIN	179.98	226.34		
Overfeat	172.20	172.30		
CIFAR10-6conv	165.33	188.34		

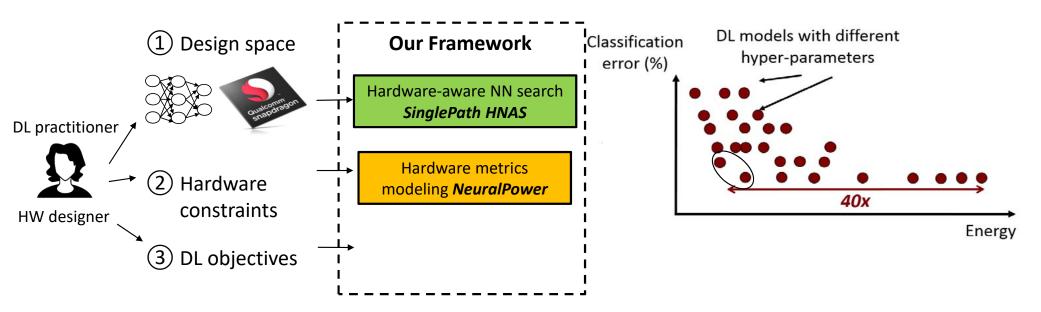
Network-level Results: Energy

Energy

$$\hat{E}_{total} = \hat{T}_{total} \cdot \hat{P}_{avg} = \sum_{n=1}^{N} \hat{P}_n \cdot \hat{T}_n$$

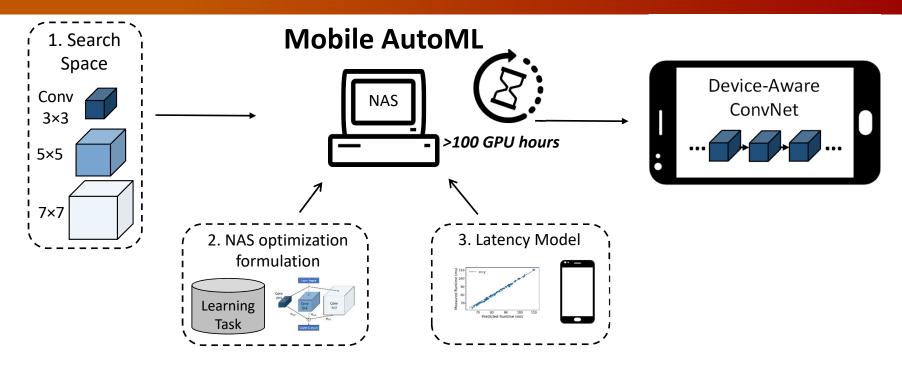
CNN	Neural Power	Actual energy			
name	\hat{E}_{total} (J)	E_{total} (J)			
VGG-16	77.312	75.452			
$\mathbf{AlexNet}$	7.565	7.594			
NIN	11.269	11.465			
Overfeat	33.616	34.113			
CIFAR10-6conv	8.938	9.433			

If We Can Measure It, Can We Optimize It Efficiently?



Neural architecture search can bring 5-10x improvement in energy or latency with minimal loss in accuracy; or can satisfy real-time constraints for inference

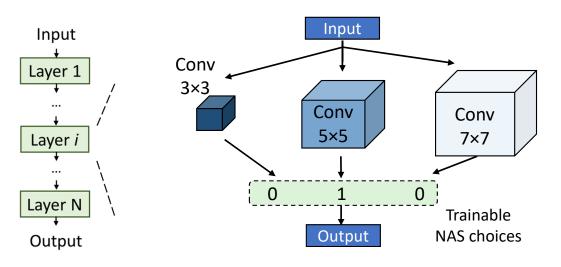
Device-aware ConvNet design: Key questions for practitioners



- Can we automatically design ConvNets with highest image classification accuracy under smartphone latency constraints?
- Can we reduce the search cost of Neural Architecture Search (NAS) from days down to a few hours?

Background: Multi-Path Differentiable NAS

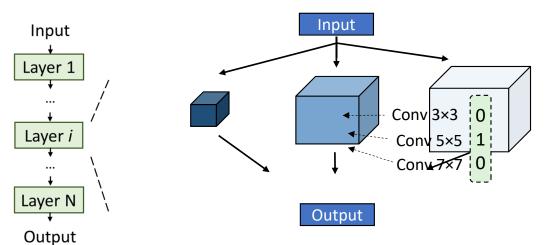
Existing Multi-Path Differentiable NAS approaches [1,2,3]



- Supernet: each candidate operation as a separate path per layer
- NAS problem viewed as an expensive path-level selection
- Number of parameters per layer: all weights across all paths
- Multi-path Differentiable NAS interchangeably updates NAS choices and model weights
- The combinatorially large design space leads to high search cost time (>100 GPU-hours)

Proposed Single-Path NAS: Key contributions

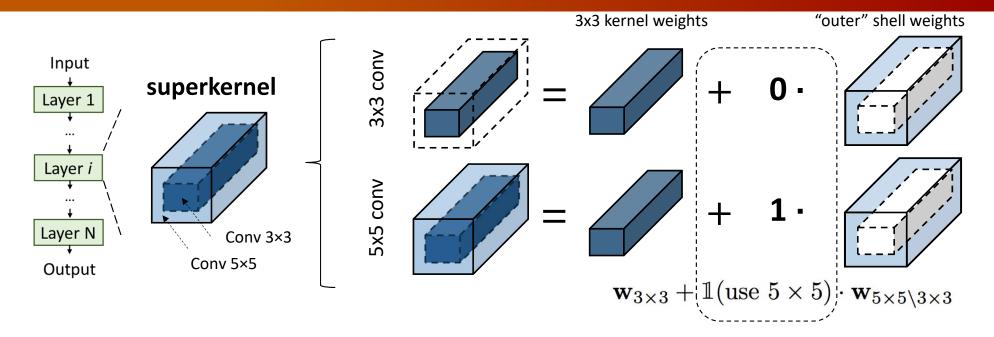
Proposed methodology: incorporate all candidate ops over one single-path



- Supernet: all candidate operations in a single superkernel per layer
- NAS problem viewed as an efficient kernel-level selection
- Number of parameters per layer: weights of largest candidate op only
- Novel differentiable "encoding" of NAS design choices over single-path design space
- State-of-the-art AutoML: up to 5,000 × reduced search cost, ImageNet top1 75.62%

[D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu, D. Marculescu, ECML-PKDD'19]

Making kernel architectural decisions differentiable

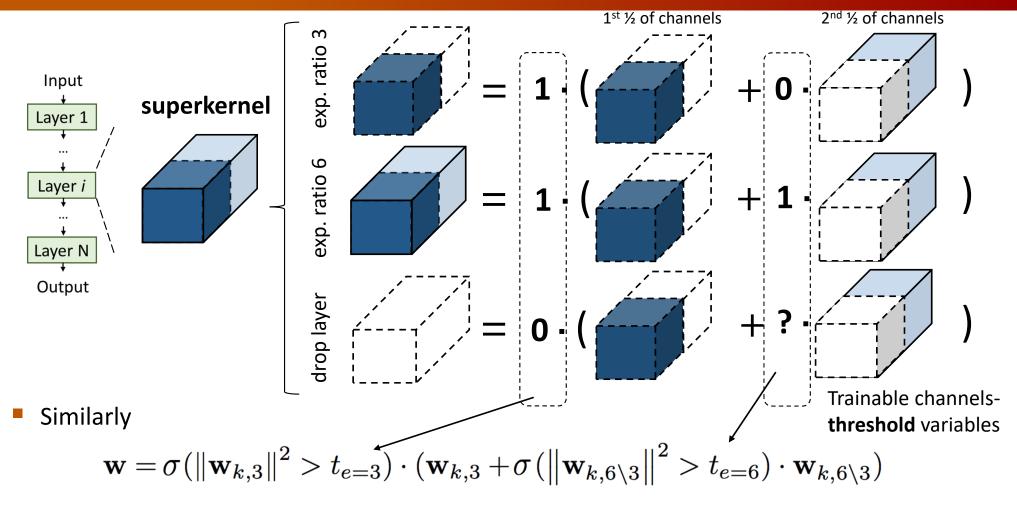


NAS kernel choice is formulated via a differentiable decision function [1,2]

$$\mathbf{w}_k = \mathbf{w}_{3\times3} + \sigma(\|\mathbf{w}_{5\times5\backslash3\times3}\|^2 > t_k) \cdot \mathbf{w}_{5\times5\backslash3\times3}$$
 Group lasso Trainable kernel-label threshold variable

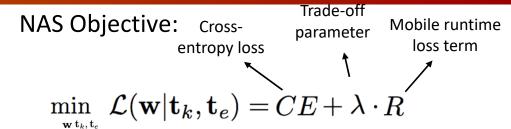
Diana Marculescu © 2020

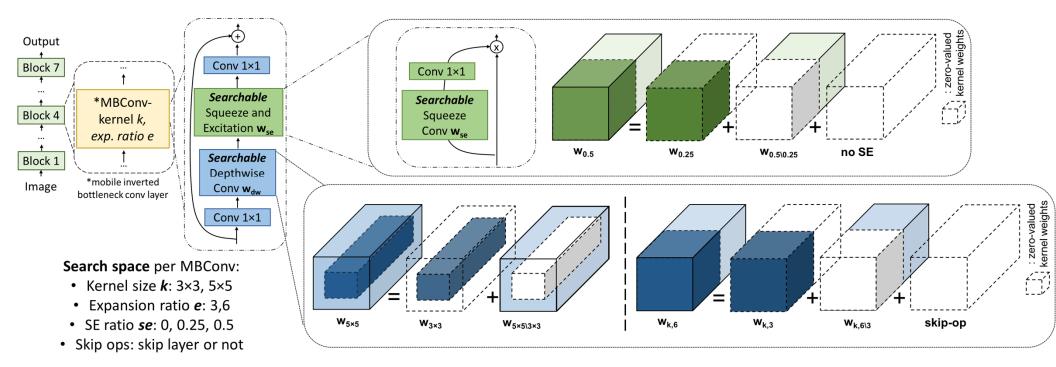
Making channel architectural decisions differentiable



Single-Path NAS: as costly as training a compact model

- Flexibly extendable to various NAS choices
- MobileNet space: [Tan et al.,'19]
 model as large as largest candidate op

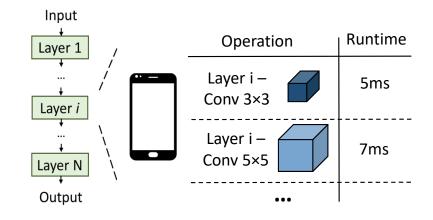


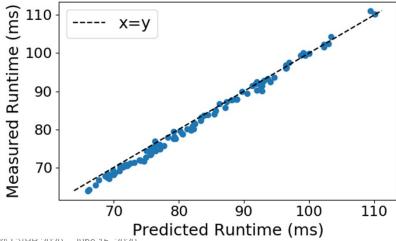


Hardware-Aware NAS: Making Runtime Term Differentiable

- Total ConvNet runtime is the sum of per-layer runtimes [1,2]
- We profile on *Pixel 1 phone*
- Populate Look-up-Table model per layer i
- Express per-layer runtime as a function of the Single-Path NAS architectural choices

$$R_e^i = R_{3\times3}^i + \sigma(\text{use } 5\times5) \cdot (R_{5\times5}^i - R_{3\times3}^i)$$





23

[1] Cai et al. ProxylessNAS, ICLR'19, [2] Wu et al. FBNet, CVPR'19

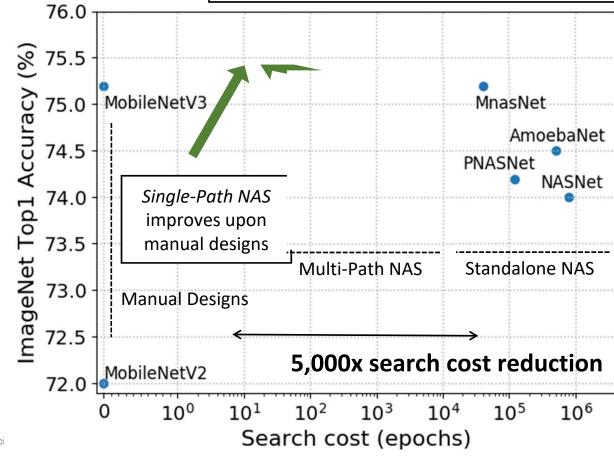
Single-Path NAS achieves state-of-the-art AutoML results

Single-Path ConvNet: 75.62% top-1 ImageNet accuracy (~80ms runtime)

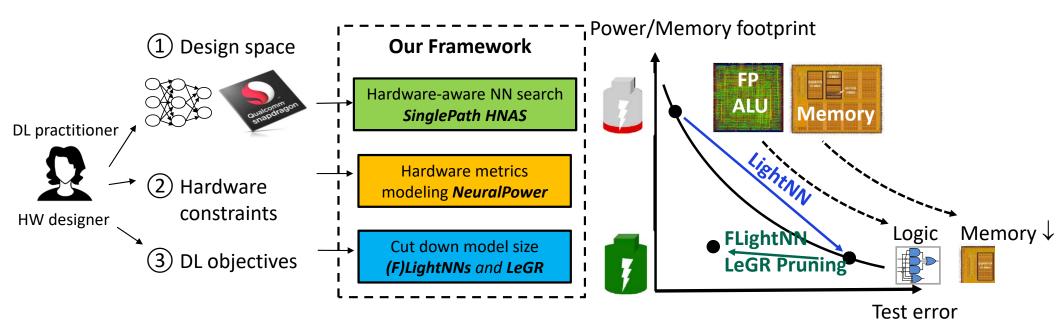
Single-Path NAS: the reduced NAS search cost by up to 5,000 x

[1] Tan et al. MnasNet, CVPR'19[2] Wu et al. FBNet, CVPR'19[3] Cai et al. ProxylessNAS, ICLR'19

Single-Path NAS pushes state-of-the-art w.r.t both accuracy & NAS search cost

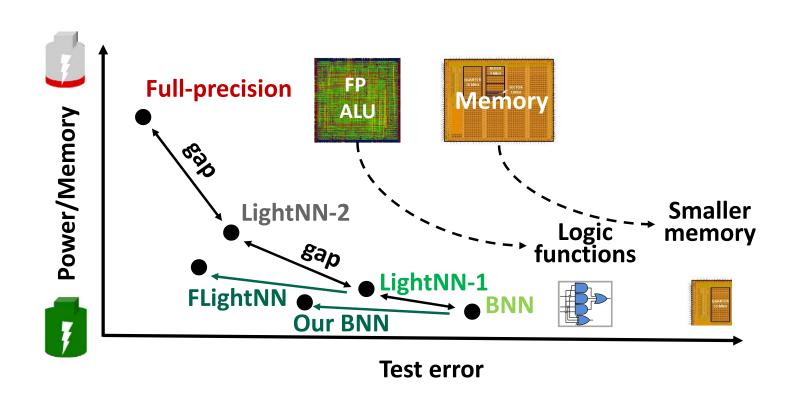


Can We Do Better?



Up to 100x lower energy, 5x less area with minimal loss in accuracy

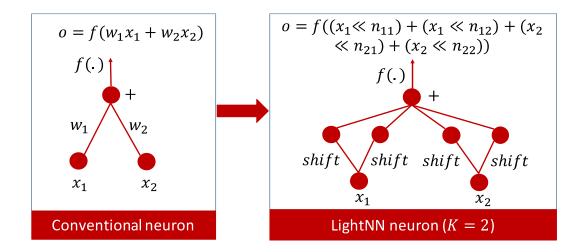
A Broad Spectrum of Lightweight NNs



LightNNs: Lightweight quantized DNN model

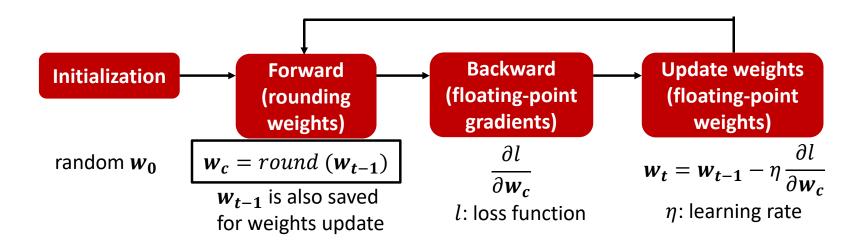
Replace multipliers with limited shift and add operators

- $w \cdot x = sign(w)(2^{n_1} + 2^{n_2} + \dots + 2^{n_K}) \cdot x = sign(w)(x \ll n_1 + \dots + x \ll n_K)$
- lack We constrain K to be one or two
- lacktriangle When K=1, the equivalent multiplier is just a shift
- lacktriangle When K=2, the equivalent multiplier is two shifts and one add (shown below)



Training LightNNs

Backpropagation algorithm is modified to improve the accuracy of trained LightNNs



[R. Ding, D. Liu, S. Blanton, D. Marculescu, GLSVLSI'17, ACM TRETS'19]

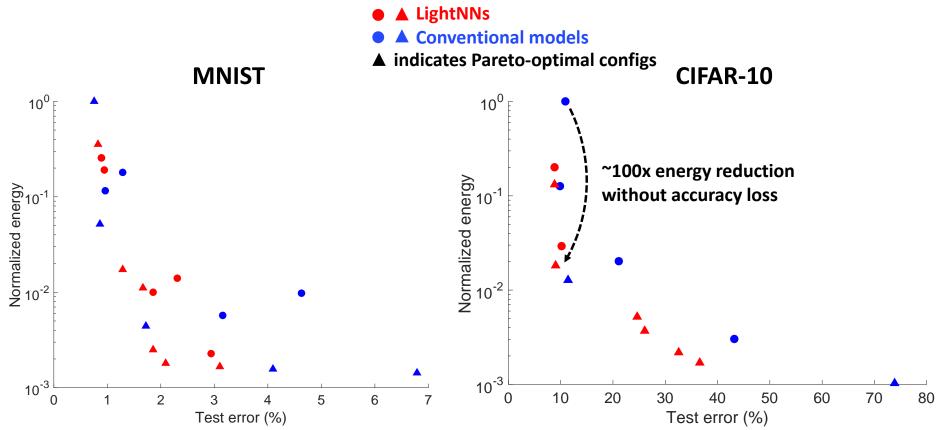
Test error results

In most cases, from good to bad: Conventional > LightNNs > BNNs

			MNIST	CIFAR-10		
		1-hidden	2-conv	3-hidden	3-conv	6-conv
Number of parameters		79,510 431,080		36,818,954	82,208	39,191,690
	Conventional	1.72%	0.86%	0.75%	21.16%	10.94%
	LightNN-2	1.86%	1.86% 1.29% 0.83%		24.62%	8.84%
	LightNN-1	2.09%	2.31%	0.89%	26.11%	8.79%
Test error	BinaryConnect	4.10%	4.63%	1.29%	43.22%	9.90%
	LightNN-2-bin	2.94%	1.67%	0.89%	32.58%	10.12%
	LightNN-1-bin	3.10%	1.86%	0.94%	36.56%	9.05%
	BinaryNet 6.79%		3.16%	0.96%	73.82%	11.40%

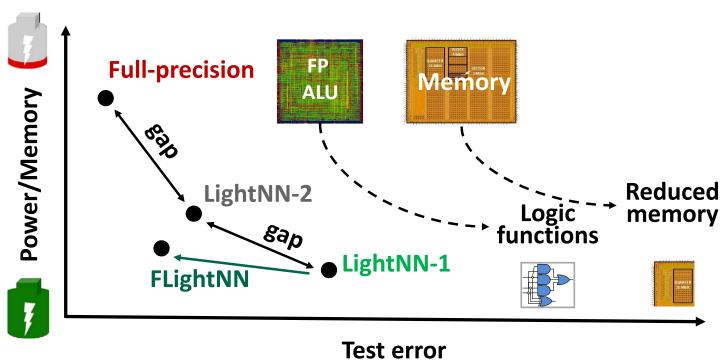
Energy-Accuracy results

LightNNs achieve more continuous Pareto front compared to conventional DNN models



FLightNNs = Flexible LightNNs

 With higher flexibility and improved training algorithm, FLightNNs create a better Pareto front



Joint Workshop on Efficient Deep Learning in Computer Vision @ CVPR 2020 - June 15, 2020

Flexible-k LightNNs (FLightNNs)

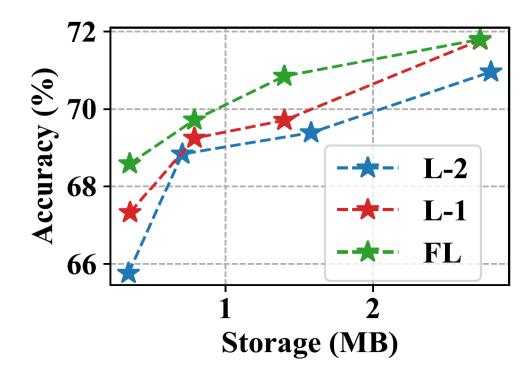
FLightNNs use customized k for each filter

Lig	htNN-	-1 filte	ers	FLightNN filters			LightNN-2 filters						
0.5	0.25	0.25	-1		0.5	0.25	0.25	-1		0.375	0.125	0.375	0.625
-0.5	-1	1	1		-0.5	-1	1	1		-0.5	0.625	0.125	-0.5
0.25	0.25	1	1		-0.25	1	0.375	1		-0.25	1	0.375	1
0.5	0.5	-0.5	0.25		0.375	0.375	0.625	-0.5		0.375	0.375	0.625	-0.5

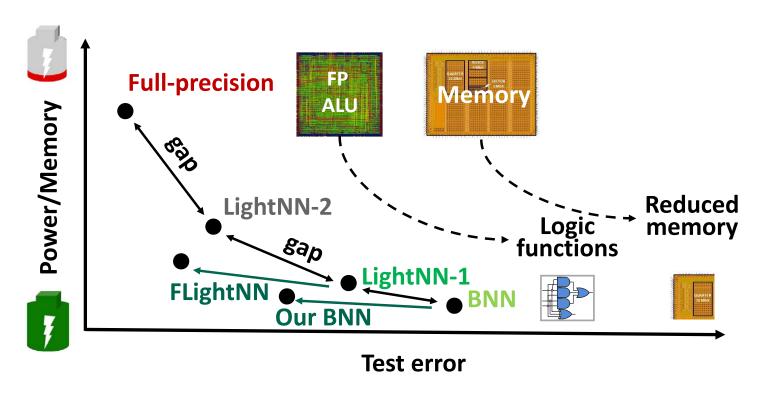
[R. Ding, D. Liu, T.-W. Chin, S. Blanton, D. Marculescu, DAC'19]

FLightNN vs. LightNNs

Experiment on CIFAR-100 shows that FLightNNs create a better Pareto front than LightNN-1 and LightNN-2



Can we recover BNN accuracy loss?



Regularizing activation distribution for increased accuracy

- Identify which of the issues is present
 - Degeneration
 - **♦** Saturation
 - Gradient mismatch
- Adjust regularization
 - ◆ Shift distribution to 25-75 percentiles
- Enable differentiability

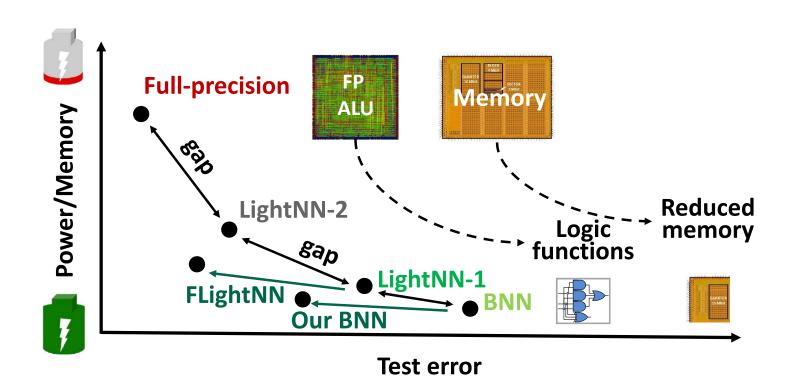
[R. Ding, T.-W. Chin, D. Liu, D. Marculescu, CVPR'19]

Accuracy improvement results

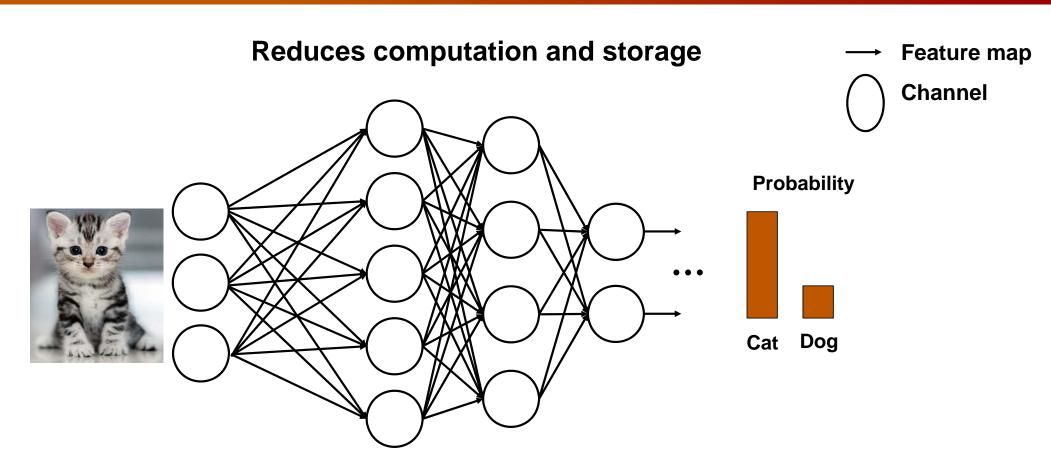
Our proposed regularization loss consistently improves accuracy of prior BNNs

Model	Base	eline	Ours		
WIOUCI	Top-1	Top-5	Top-1	Top-5	
BNN [NIPS'16]	36.1%	60.1%	41.3%	65.8%	
XNOR-Net [ECCV'16]	44.2%	69.2%	47.8%	71.5%	
DoReFa-Net [Arxiv'16]	43.5%	-	47.8%	71.5%	
Compact Net [AAAI'17]	46.6%	71.1%	47.6%	71.9%	
WRPN [ICLR'18]	48.3%	_	53.8%	77.0%	

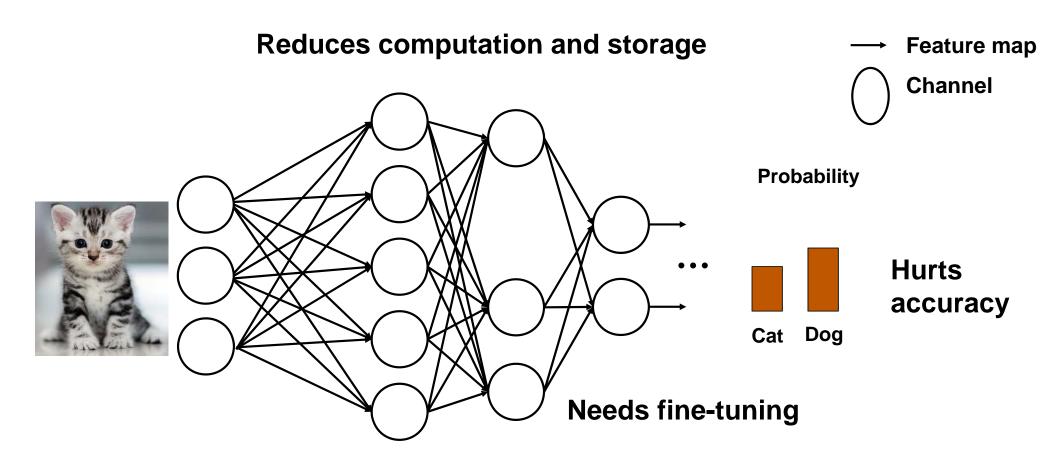
FLightNNs and our improved BNNs create a better Pareto front



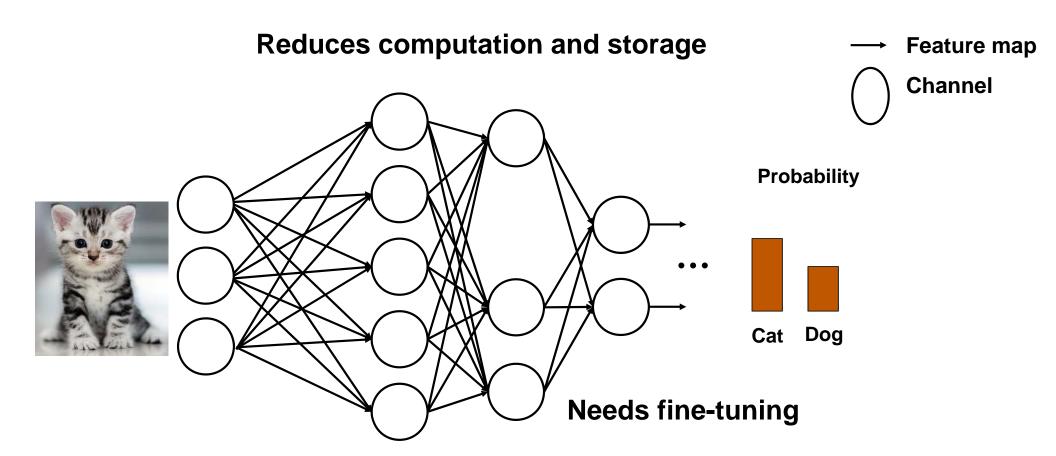
What else can we try? Filter (channel) pruning



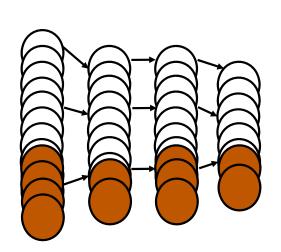
What else can we try? Filter (channel) pruning



What else can we try? Filter (channel) pruning

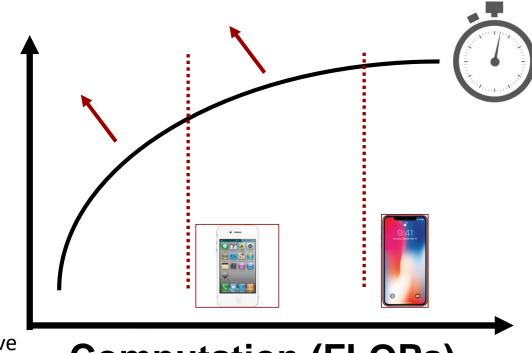


Trading off accuracy for computation resources



Accuracy

- Performance of filter pruning
 - ♦ How good is the trade-off curve
 - How long does it take to obtain solutions on the curve



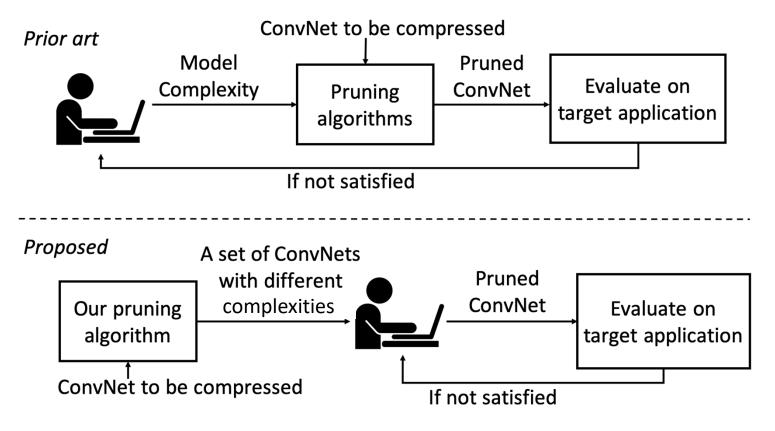
Computation (FLOPs)

Pruning efficiently is important

In some applications, we do not know a priori the target FLOPs and/or accuracy that result in the optimal utility of the application

Embodied AI where both time to the destination and the closeness to the destination matter in non-trivial ways

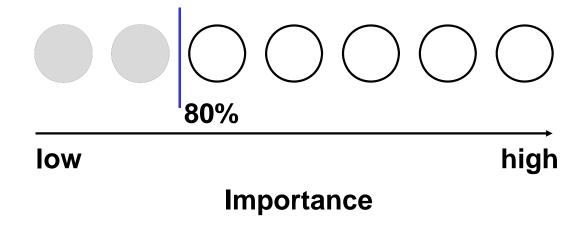
Our solution



[T.-W. Chin, R. Ding, C. Zhang, D. Marculescu, CVPR'20]

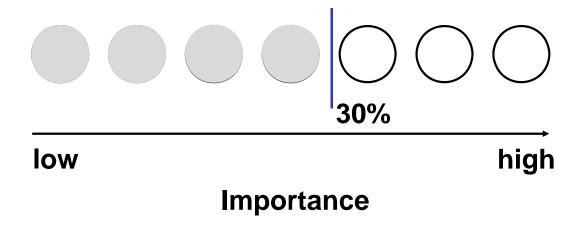
Low cost pruning by Learning a Global Ranking (LeGR)

If we can learn a global ranking of importance for filters in a CNN, pruning to a certain computational (FLOPs) budget can be done simply with thresholding



Low cost pruning by Learning a Global Ranking (LeGR)

If we can learn a global ranking of importance for filters in a CNN, pruning to a certain computational (FLOPs) budget can be done simply with thresholding



Learning the right ranking is hard

- Worst case complexity for the optimal ranking is O(K!) CNN evaluations and re-trainings, where K is the total number of filters in the CNN
- Assumption based on empirical results [Li et al., ICLR'17]
 - lacktriangle l₂ norms of filter weights can accurately rank filters in an intra-layer fashion.
- New ranking metric

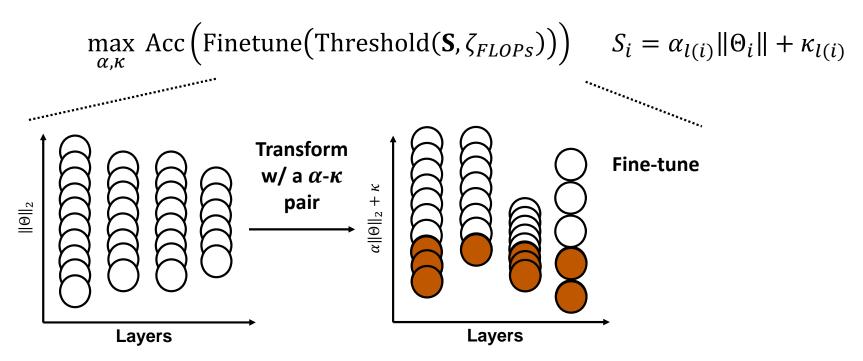
Layer-wise affine transformation coefficients

$$S_i = \alpha_{l(i)} \|\Theta_i\| + \kappa_{l(i)}$$

 $\it l_{\rm 2}$ norms of the ith filter weights

How to evaluate the goodness of a global ranking?

• Assume an arbitrary ζ_{FLOPS} % of original FLOPs



[T.-W. Chin, R. Ding, C. Zhang, D. Marculescu, CVPR'20]

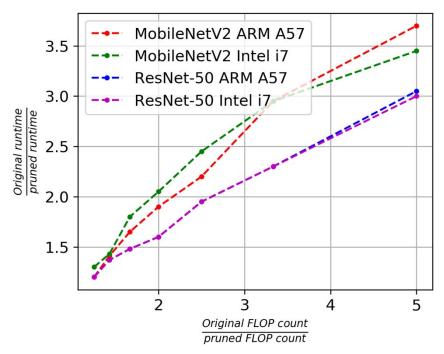
Accuracy/FLOPs trade-offs

Note that for our proposed LeGR, the ranking is learned only once for each network

NETWORK	Метнор	Acc. (%)	MFLOP COUNT
RESNET-56	PF [31]	$93.0 \to 93.0$	90.9 (72%)
	TAYLOR [42]*	$93.9 \rightarrow 93.2$	90.8 (72%)
	LEGR	$\textbf{93.9} \rightarrow \textbf{94.1} {\pm} \textbf{0.0}$	87.8 (70%)
	DCP-ADAPT [70]	$93.8 \rightarrow 93.8$	66.3 (53%)
	CP [22]	$92.8 \to 91.8$	62.7 (50%)
	AMC [19]	$92.8 \to 91.9$	62.7 (50%)
	DCP [70]	$93.8 \to 93.5$	62.7 (50%)
	SFP [18]	$93.6 \pm 0.6 \rightarrow 93.4 \pm 0.3$	59.4 (47%)
	LEGR	$\textbf{93.9} \rightarrow \textbf{93.7} {\pm} \textbf{0.2}$	58.9 (47%)
VGG-13	BC-GNJ [37]	$91.9 \to 91.4$	141.5 (45%)
	BC-GHS [37]	$91.9 \rightarrow 91$	121.9 (39%)
	VIBNET [7]	$91.9 \to 91.5$	70.6 (22%)
	LEGR	$91.9 \rightarrow 92.4 \pm 0.2$	70.3 (22%)

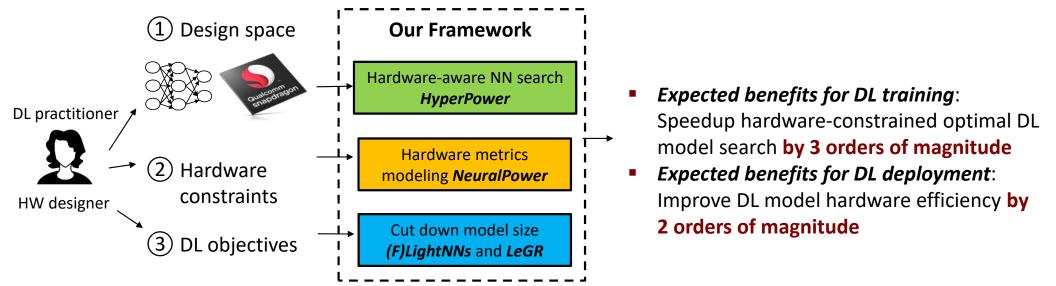
FLOPs vs. latency

 Channel pruning introduces an almost linear relationship between FLOPs and latency



[T.-W. Chin, R. Ding, C. Zhang, D. Marculescu, CVPR'20]

We Put the "Machine" Back in ML for True Co-Design



Impact: This methodology can enable the optimal design of hardware-constrained DL applications running on mobile/IoT platforms

Hey Siri...

What's my name?

Off-network

Carnegie Mellon University
Electrical & Computer Engineering

Thank you!

Questions

Acknowledgements:

Collaborators: Shawn Blanton (CMU), Da-Cheng Juan (Google), Cha Zhang (Microsoft)

Students: Ermao Cai, Zhuo Chen, Ting-Wu (Rudy) Chin, Ruizhou Ding, Dexter Liu,

Dimitrios Stamoulis

EnyAC group webpage: enyac.org

Code available: github.com/cmu-enyac and github.com/dstamoulis/single-path-nas

