Title: Putting the “Machine” Back in Machine Learning: The Case for Hardware-ML Model Co-design
Abstract: Machine learning (ML) applications have entered and impacted our lives unlike any other technology advance from the recent past. While the holy grail for judging the quality of a ML model has largely been serving accuracy, and only recently its resource usage, neither of these metrics translate directly to energy efficiency, runtime, or mobile device battery lifetime. This talk uncovers the need for building accurate, platform‐specific power and latency models for convolutional neural networks (CNNs) and efficient hardware-aware CNN design methodologies, thus allowing machine learners and hardware designers to identify not just the best accuracy NN configuration, but also those that satisfy given hardware constraints. Our proposed modeling framework is applicable to both high‐end and mobile platforms and achieves 88.24% accuracy for latency, 88.34% for power, and 97.21% for energy prediction. Using similar predictive models, we demonstrate a novel differentiable neural architecture search (NAS) framework, dubbed Single-Path NAS, that uses one single-path over-parameterized CNN to encode all architectural decisions based on shared convolutional kernel parameters. Single-Path NAS achieves state-of-the-art top-1 ImageNet accuracy (75.62%), outperforming existing mobile NAS methods for similar latency constraints (∼80ms) and finds the final configuration up to 5,000× faster compared to prior work. Combined with our quantized and pruned CNNs that customize precision and pruning level in a layer-wise fashion, such a modeling, analysis, and optimization framework is poised to lead to true co-design of hardware and ML model, orders of magnitude faster than state of the art, while satisfying both accuracy and latency or energy constraints.
Biography: Diana Marculescu is Department Chair, Cockrell Family Chair for Engineering Leadership #5, and Professor, Motorola Regents Chair in Electrical and Computer Engineering #2, at the University of Texas at Austin. Before joining UT Austin in December 2019, she was the David Edward Schramm Professor of Electrical and Computer Engineering, the Founding Director of the College of Engineering Center for Faculty Success (2015-2019) and has served as Associate Department Head for Academic Affairs in Electrical and Computer Engineering (2014-2018), all at Carnegie Mellon University. She received the Dipl.Ing. degree in computer science from the Polytechnic University of Bucharest, Bucharest, Romania (1991), and the Ph.D. degree in computer engineering from the University of Southern California, Los Angeles, CA (1998). Her research interests include energy- and reliability-aware computing, hardware aware machine learning, and computing for sustainability and natural science applications. Diana was a recipient of the National Science Foundation Faculty Career Award (2000-2004), the ACM SIGDA Technical Leadership Award (2003), the Carnegie Institute of Technology George Tallman Ladd Research Award (2004), and several best paper awards. She was an IEEE Circuits and Systems Society Distinguished Lecturer (2004-2005) and the Chair of the Association for Computing Machinery (ACM) Special Interest Group on Design Automation (2005-2009). Diana chaired several conferences and symposia in her area and is currently an Associate Editor for IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. She was selected as an ELATE Fellow (2013-2014), and is the recipient of an Australian Research Council Future Fellowship (2013-2017), the Marie R. Pistilli Women in EDA Achievement Award (2014), and the Barbara Lazarus Award from Carnegie Mellon University (2018). Diana is a Fellow of ACM and IEEE.